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mpact of Deep
_earning on Speech
Processing

Deep learning solved
speech processing

Huge improvements —
especially given

Well-defined task and
conditions

Large matched-condition
datasets

Focused community effort
over long period of time
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Problem not completely solved ...

Challenges still remain



Important
Challenges for

Speech Analytics Audio in the Wild:

Signal characteristics

F Degraded signals
rom controlled Distant microphones, distorted and noisy channels,
recording conditions: reverberation, compression, etc.
< LS Variability
Multiple speakers, speaker states and environments
Nonstationary noises and distortions
Unexpected events

Test conditions
Mismatch with training
Short duration test samples, e.g. 1-5 sec




Addressing
Real-world
Challenges

Technology needs to
work in real-world
conditions

Realistic Datasets
Exhibiting a variety of conditions present in real situations

Research Directions

Data augmentation

Feature design and learning

Deep learning models
Adaptation/calibration with limited data

Example Speech Analytics Tasks

Speech Activity Detection (SAD)
Speaker ID (SID)

Keyword Detection / Query by Example (QbE)



Realistic Datasets

Exhibiting a variety of conditions
present in real situations
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Datasets Available to
the Community

NIST and other formal evaluations: datasets
with challenging conditions

CHIME challenges (2011-2018): speech on speech, speech in
noise, distant speech

NIST SRE eval data (1996-2018): telephone and interview speech
data, including non-English

DARPA RATS data (2011-2014): mostly PTT, severe transmission
noise

Contributions from the research community

ICSI meeting corpus (2004): multiple speakers, close-talking or
distant mics

VoxCeleb (2017, 2018) : 1000’s of celebrity speakers in the wild
SRI’s recent contributions (SITW, VOICES)

Many speakers
Multiple speaker segments
Wide range of “in the wild” artifacts



Speakers In The Wild

(SITW) 2016: Focus: Multi-speaker, cross-condition data from real-world
A “Sample” of Real recordings
Conditions Source: Open-source videos

Subjects: 299 public figures
Language: English (native and non-native)

Publicly Available for Research Purposes:
www.speech.sri.com/projects/sitw/

Combination of Conditions: e.g.: red carpet, Q&A in
auditorium, ice bucket challenge

Targeted conditions:
Traffic noise Background music
Reverb Non-linear effects
Multi-layer compression Natural Lombard effect
M. McLaren, L. Ferrer, D. Castan, Multi-speaker (1-8) Crowd noise
and A. Lawson, “The speakers in Conversational speech Restaurant noise
4019 VA (UL, SRRl gl Laughter Variable duration (6 sec — 2 hours)

database,” Interspeech 2016 Phone channel



VOICES:
voices.lab41.org
free download

Focus: Distant microphone
recordings — variable but
controlled conditions

Source: 300 speakers from
LibriSpeech audio (open source),
re-recorded in furnished rooms
with background noise

C. Richey, M. A. Barrios, Z. Armstrong, C.
Bartels, M. Graciarena, A. Lawson, M. K.
Nandwana et al., “Voices obscured in
complex environmental settings (VOICES)
corpus,” INTERSPEECH 2018

Microphone and loudspeaker placement
in one of the collection rooms

Distractor 2 D @ - 4 studio mics (larger circles)
ke - 8 lavalier mics (smaller circles)
@ - Mic #9 is under a table

@®@ D - Mics #10 & #11 are attached to
@ Distractor 1 the Ceiling

Main speaker

000 - Mic#12 isin the wall
“ Dms"am” - Speaker can move/rotate

4 background noise conditions played from
distractor speakers

Music and TV noise from single loudspeaker
Babble noise from all 3 loudspeakers
15dB SNR measured near mic 1

1440 h of retransmitted distant audio (120h/mic)



Need Additional
Datasets and
Robust Learning
Approaches

Deep learning approaches benefit from large
amounts of data

Need realistic datasets with wide range of
extrinsic and intrinsic variability

For example:
Outdoor collections
Longitudinal data of same speakers

Intrinsic speaker variability (emotion, voice projection,
health, style)
E.g. SRI-FRTIV (2009) corpus focused on speaking effort

Need learning approaches that use less data
and can generalize to unseen conditions



Research Directions for
Robust Speech Analysis

Data augmentation
Feature design

Deep learning and feature
learning

Adaptation/calibration
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DEIF
Augmentation - Real-world data often more diverse than

development corpora

= Augment corpora to compensate

- Fabricate data: re-record or simulate
channel/reverberation

= Process signals to simulate variability: vocal tract
length variations, speech rate changes, channel
effects, etc.

= Successful when target properties are known
and can be simulated (e.g. reverberation
challenges)

- Hard to generalize to unseen/unexpected
conditions

T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech
recognition,” in Proceedings of INTERSPEECH, 2015
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Feature Examples of auditorily and perceptually motivated noise-robust
, features developed under RATS (2010-2014)
Design for
. Feature Site  Characteristics

Noise — . .
PNCC CMU Uses power-law nonlinearity and noise suppression

RObUStneSS Gabor ICSI Inspired by high level features discovered in cortical

regions of the brain

DOC/SYDOC SRI Uses damped oscillator and synchrony processing
NMC/MMeDuSA SRl Uses modulation spectrum and root compression
MHEC UTD  Perceptual MVDR; quantile cepstral dynamics

normalization

V. Mitra, H. Franco, R. M.
Stern, J. Van Hout, L. Ferrer,
M. Graciarena, W. Wang, D.
Vergyri, A. Alwan, and J. H.
Hansen, “Robust features in . Each has adva ntages
deep-learning-based speech

recognition,” in New Era for = All designed to work in noisy channels

Robust Speech Recognition. ) L
Springer, 2017, pp. 187-217 = Parameters heavily optimized on data

= Combining features often improves results — no single winner

MbCombFO UCLA Variable frame rate analysis; temporal modulation
processing; compressive sensing
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Deep Learning
Models Increased \

Static, 4, AA Convolution layer

Robustness A | foremaps  TXPooling
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» Deep Neural Nets (DNNs) s \ _ )
significantly improved ASR ; :

- Deep Convolutional Neural S :
Nets (CNNs) emerged as an —
alternative demonstrating Frames \ "

robustness to background
noise

Huang, 1., Li, J., & Gong, Y. “An analysis of convolutional neural networks for

speech recognition”, ICASSP, 2015.
Y. Qian and P. C. Woodland, “Very deep convolutional neural networks for

robust speech recognition,” in IEEE SLT, 2016
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CNN variants:
Time-Frequency
Convolution
(TFCNN)

Several architectures have
been explored to improve
robustness

SRI proposed TFCNNs in IARPA ASpIRE challenge
Convolution performed across both time and frequency scales
Worked very well combined with noise-robust features
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V. Mitra and H. Franco, "Time-frequency convolutional networks for
robust speech recognition," in Proc. ASRU, 2015.



Features based on

deep-learning
models

Bottlenecks (BNs)
- replacing noise-robust

features

L. Bai, P, Jancovic, M. Russell, and P. Weber,
“Analysis of a low-dimensional bottleneck neural

network representation of speech for modelling
speech dynamics,” in Proc. Interspeech 2015
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Bottleneck features discriminatively learned through
supervised DNN models

Bottleneck

Senone
posteriors

Spliced spectral

featies

Training data

Spliced BN H
features




Features b?SEd on BN features learned through supervised DNN
deep-learning models or unsupervised autoencoders

models

Bottleneck

Bottlenecks from
autoencoders

Spliced spectral

featﬁes ﬁ
Training data
Spliced BN HH

Q300
> 1

features

Stacked BNs have also been used very successfully
for multiple tasks



Features based on
deep learning
models

Acoustic embeddings:

Bottlenecks are frame level,
while embeddings learn to map
variable-length segments to
fixed-length vectors

K. Levin, K. Henry, A. Jansen, and K. Livescu,
“Fixed-dimensional acoustic embeddings of
variable-length segments in low-resource
settings,” in Proc. ASRU, 2013

M. Rouvier, P-M. Bousquet, and B. Favre,
“Speaker diarization through speaker

embeddings,” in Signal Processing Conference
(EUSIPCO), 2015

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey,
and S. Khudanpur, “X-vectors: Robust DNN
nglbgeddings for speaker recognition,”, ICASSP,

 Embedding layers
capture information
relevant to a task
while removing
distortion that may
be present in the
feature space (robust)

« Similar classes of signals
have similar embeddings

« Typical input is MFCCs —
have also used PNCCs

embedding b «— OOO O
}-
embedding a <«— OOO O fevel

P(spkr; | xi,%p,...,XT)

)
00000 ~O

segment-

Statistics Pooling

L frame-level

Example architecture for
speaker ID embeddings
(Snyder et al., 2018)



Adaptation to
Encountered
Conditions

- -

ﬁ\\ Subset Original

train
Data

A
Similarity '

) Augmented Field Adaptation
Data l
: > Adapted
Model
‘ﬁa ( )

Measure

t

- Exploit available information — including original training data
and test data - in the best way possible

- Unsupervised adaptation: applied when new, unseen conditions are
encountered and there are no labels

- Data selection: dynamically sub-select the most appropriate original
data from inside the model

- Data augmentation: mimic target conditions

= Re-training typically involves only the last layers of the model
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Need for
Calibration

Reject / Validate speech

Classification decisions class distributions
are made by applying a

selected
/ to minimize a
decision cost function

hreshold
threshold to system
scores
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Need for
Calibration

With signals in the wild,
scores shift across
different conditions

With a single threshold,
system performance on

unseen conditions
becomes UNRELIABLE

Example comparison

conditions

—
o 4

Telephone

channel

—
M A

Distant Speech

 ——
S

Noisy
Environment

v

Reject / Validate speech
class distributions

selected
on one condition
telephone
\ Does not generalize
! to other conditions

Mant Speech

0

My conditions

0



Need for
Calibration

In an ideal world, we
would pick a decision
threshold for each
possible condition...

Example conditions

—
4

Telephone

channel

—
M A

Distant Speech

 ——
e

Noisy

Environment
v

Reject / Validate speech

class distributions

0

Each condition
needs a different

decision
operate as expected

mnt-s peech

0

0

m Environment

to



Need for
Calibration

Must calibrate scores to
a common space

- Then a single threshold can
be applied with confidence
across all conditions

N. Briimmer and J. Du Preez, "Application-
independent evaluation of speaker detection,

"Computer Speech & Language 20, no. 2-3 (2006):

230-275

Example conditions

—
4

Telephone

channel

—
M A

Distant Speech

 ——
e~

Noisy

Environment
v

Reject / Validate speech
class distributions

telephone

Distant Speech

1

Noisy Environment

5

Optimal

across conditions



Example Speech
Analytics Tasks

Speech Activity Detection (SAD)

Speaker Identification (SID)

Keyword Detection /
Query by Example (QbE)
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Speech Activity
Detection

Goal: detect presence and
temporal location of

speech in audio signals
» Easy in clean conditions

= Gets harder as environment
or channel get noisier

Towards a fast, effective
and robust solution

© 2018 SRl International. All Rights Reserved. Proprietary

To process speech you first
need to find it!

\

Noise Speech Noise
Downstream automated speech processing
or human listeners

SAD significantly reduces the amount of data that needs to be
processed by a smart interactive device or data mining system

Critical component for follow up systems:
If SAD misses speech segment, no info can be extracted
If SAD false alarms, almost certain error later in pipeline



2014 SRl
SAD Pipeline

Noise-robust
features + GMMs

Complex multi-system
combination

Detected
speech
regions

COMBINER |:>

* Systems had
different component
parameters



2015 DNN-based
SAD

l l l l l CHN DNN BN

Norm Norm Norm Norm Norm

Norms Norms Norms Norms Norms

- Great performance on seen data cOmtxt cOnixt

after global calibration of fused
system (over 10-20%
improvement over GMM)

‘ ‘ ‘ SAD DNN BN
Context Context Context

Norms Norms Norms Norms Norms

- More complex yet

- Feature combination at multiple

levels
- Test-adaptive calibration crucial *

for generalizing to new data e,

Unsup Adaptation

LLR Generation + Smoothing

- Unsupervised adaptation not v v

Segments + Pad Segments + Pad Segments + Pad

always successful ! v '



SAD today = Two important goals were not achieved with prior eval
systems:

= Generalization to unseen, highly variable, noisy conditions

= High speed and low memory usage

- Developed single MFCC-based DNN system
= Multi-condition training data
- Feature normalization designed to minimize false alarms

= Applied simplified system in OpenSAT 2017

- Comparable to best performing system on Video (VAST) track:
real-world videos: spontaneous speech, background music, noises

0.14
0.12

01 6x faster!
0.08 \
0.06
0.04
0.02 I I I I

TeamA+ SRI- SRI-
SRI-  6xfusion single
6xfusion

DCF

o



Remaining SAD
Challenges

For Data In-the-Wild

Adaptation and calibration to new conditions with
Little data
Unbalanced annotations
Unsupervised data

Accuracy in the face of variable/unseen conditions

Recent approaches explore use of LSTM models and acoustic
embeddings

Often hard to draw line between speech and
nonspeech

Live human vs. TV/radio, intelligible speech vs unintelligible
babble, singing



Speaker ID

Goal: Identify a speaker
known to the system, in
potentially very different
conditions from what it
has seen

From UBM-based
i-vectors and noise-
robust features to deep
learning and embeddings

© 2018 SRl International. All Rights Reserved. Proprietary

Enroliment
- Get a sample of speech to model each speaker

Recognition
- Compare incoming speech to known speaker models

[ Hi, this is Steve
speaking outdoors,=(;

= )

\ 4 A
Outdoors Speaker 1
. , ID COm
‘(Whisper))g : | System |Match Non-Match
\_ J

Indoors

Challenging speech classification task since typically:
- there is very little training data for target classes (speakers)
- enrollment and test conditions for a speaker are mismatched



Standard Approach

2012:
UBM+ i-vectors +
Bayesian Backend

Need effective and
robust frontend
representation and a
modeling approach that
can remove sources of
variability

UBM/i-vector framework Backend

GMM-

>

i-Vector PLDA Calibration
UBM Sim. Thr

I-vectors: project variable-duration utterance onto a low-
dimensional vector, typically of a few hundred components

Backend classification and calibration modules measure
similarity to target speaker

PLDA: models speaker and intersession variability in the space of i-
vectors, based on joint-factor analysis work



DNNs for SID:

Transfer learning for T
increased robustness Q —

UBM i-Vector

Hybrid framework

= Replace GMM-based UBM with

discriminative ASR-trained DNNs ASR S
Filt. Bank b
= UBM: Unsupervised sound clustering I;eassn 38

= DNN: Supervised, discriminative
modelling of classes (senones)

- Use bottleneck rather than full
senone posteriors

- Lower dimensionality, faster
computation

i-Vector

- Decouple frame alignment

feature from SI D feature M. McLaren, D. Castan, L. Ferrer, A. Lawson, “On the Issue of Calibration
- Reduce phonetic dependency in i-vectors in DNN-based Speaker Recognition Systems,” in Proc. Interspeech 2016.



Low-dim representation

with speaker
embeddings (2017)

Replace i-vectors with
embeddings extracted from
a feed-forward DNN

Long-term speaker

characteristics are captured

by a temporal pooling layer
Mean and standard deviation
on the segment (2 - 10s)

Speaker Embeddings

Frame Level Segment Level

t-2 t-3
—_ —_— q>;
(a]
t t t ot 'B
—_ —_> > L,V
O o3
=
t+2 t+3 '-g 5
—_> —_> gs

’ .,‘

Sim. Thr

Calibration

Backend

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors:
Robust DNN embeddings for speaker recognition,” ICASSP, 2018



Benchmarking
progress in realistic
conditions

20%
18%
16%
14%

12%
o 10%
B 8%
6% 7.06%
4% 5.75%
2% 3.13%
0%

VOICES-src VOICES (distant speech  Speakers in the Wild
and noise) (SITW)

M 2014 i-vector fusion(PNCC, PLP) m 2017 Hybrid DNN 2018 Embeddings

M. K. Nandwana, J. van Hout, M. McLaren, A. Stauffer, C. Richey, A. Lawson, M.
Graciarena, “Robust Speaker Recognition from Distant Speech under Real
Reverberant Environments Using Speaker Embeddings,” in ISCA INTERSPEECH 2018



Effectiveness of
embeddings in
short durations

Current SID approach
works as well on 2 sec
audio segments as pre-
embeddings did on 8 sec

At 5 sec duration, embeddings reduce error by 45%

_——

55

50

45

40

35 30 25
Duration of Speech (secs)

20

15

10

5

50%

45%

40%

35%

30%

25%

20%

Percent reduction in Error

15%

10%



Need for Field
Adaptation

- Big degradation in mismatched
conditions (from RATS data)

- Simply adding data to retrain PLDA
does NOT work due to underlying
assumptions on speakers’
distributions among different
conditions across original and
adaptation data

- Source-normalization makes
adaptation data compatible to
original model

Source Normalization (SN)
enables gain from adaptation data

Further research is needed to better exploit
the limited adaptation data

60
/ m BASELINE

>0 ® MISMATCH
3 40 m ADAPT (PLDA)
£ / B ADAPT (SN-PLDA)
NS
S 30 y
®
NS
< 20

10

0

A B C D E F G H

M. McLaren, and D. Van Leeuwen, “Source-normalized LDA for robust speaker
recognition using i-vectors from multiple speech sources,” Audio, Speech, and
Language Processing, IEEE Transactions on 20 (3), 755-766, 2012



Trial-Based
Calibration (TBC):
Towards fail-safe
calibration

- Key to good calibration: use data

that properly represents the trial
conditions

- In the wild, conditions are
different for every trial

- Relevant trials are found with a
metric of similarity between the
acoustic conditions of two signals

- When not enough trials are
selected to train a calibration
model, the trial is not calibrated

- Better not to calibrate at all then
calibrate badly

Speech classification System

Train calibration calib q
. alibrate
Enroll Find similar Enough model and calibrate B Score
calibration samples >COrE

Test data found?
Score not
calibrated!

 Available Actual DCF
Calibration Data . .
after calibration
of raw scores

m global calibr.

TBC
0.4
0.3
0.2
0.1
0
SITW SRE16-eval

M. McLaren, A. Lawson, A., L. Ferrer, N. Scheffer, and Y. Lei, “Trial-based calibration for
speaker recognition in unseen conditions”, In Odyssey 2014

L. Ferrer, M. K. Nandwana, M. McLaren, D. Castan, and A. Lawson. "Toward Fail-Safe
Speaker Recognition: Trial-Based Calibration With a Reject Option”. |IEEE/ACM Transactions
on Audio, Speech, and Language Processing 27, no. 1 (2019): 1404153



Remaining SID
Challenges

Multi-speaker SID

Data in the wild is hardly ever single speaker

Intrinsic speaker variability
Impact by emotion, stress, vocal effort, etc.

Optimal speaker embedding computation

Unsupervised adaptation to new conditions
Trial based calibration is one approach

Confidence and calibration

When do we trust the system output?
How to avoid miscalibration



Query-by-Example
(QbE)

Robust keyword
detection under very
challenging acoustic

conditions
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Keyword Spotting and
Query-by-Example:
Finding Important
Spoken Words

When ASR is not accurate
enough, focus only on keywords

Keyword Spotting (KWS) finds word
probabilities using the most likely
word sequences from ASR

Degrades for OOVs or for low ASR
performance

Query-by-Example (QbE) lets the user
select an audio sample and search
for other occurrences of that
keyword

Language independent
One-shot learning

.

Keyword list
* “hello”
* “acarpenter”

“carpenter{

Automatic Speech
Recognition (ASR)

Keyword Spotting
(KWS)

Query by Example
(QbE)

“hello i am a carpenter”

“hello” 0.2-0.4s
“a carpenter” 1.1-1.6s

“carpenter” 0.5-0.7s

prob = 0.92
prob =0.8

prob = 0.96



QbE DNN-based

Implementation
Test-adaptive
Loocback 1st pass QbE scores
l T
||I|II|II|III Multilingual Bottleneck Network —  Query BNF bl
—
'Illll'lllll' .—.: E g ?'f'.gﬂ‘;.c"%:\"i % == combination
il = £ 3 -> JREATOC = £
=5 JHANYS &
Search audio llll l
af [l JoafJfs] o il
Final QbE
scores
E. Yilmaz, J. van Hout and H. Franco.
LR RS Ul A LIS il Noise robust SAD is needed to remove silence
for Rescoring Query-by-Example
Search.” IEEE ASRU 2017

and noise from the query



QbE DNN-based Implementation

Word embedding representation

Test-adaptive

feedback
1st pass QbE scores
l it
I Ill I IlI I DTW search
il Multilingual Bottleneck Network
== Query BNF
||||I|||||I|| — 2 L ™ combination
wa 58 MM o Vot Tat Z
85 e V' 0 =
jjjil II - '§ - “‘.Q.ﬂ“‘ 1':‘ ' 4',.“0 3{.“\ - E
2 A Y, s ",
£ JRANYS 2 7
Search audio

s oaffo UU,l

Final QbE
scores

TDGFB
y

| Splicing
|

Trained on multi-lingual data set

Time-domain GFB features for
noise robustness




QbE DNN-based Implementation

Search

Query audio

Search audio

N\

Test-adaptive
feedback

l

Multilingual Bottleneck Network
Query BNF

—
—
—-—)

L

- . g =
combination \ n;

1st pass QbE scores

[TETTH

DTW search

= Paw P uW w
§8  eliaiinluleisls & :
\"‘/ \v"l (/ ll‘ (l ! |
35" olulnle]elnin™ £ 3
) ]
227 MMNTOT g

Sequence X /\
-~
770N
/ \ -
/ \ PEEEN
S / N - ’
Sequence Y A\ / N -7 s,
N . ~ -7 N <
- ’ ~ - -

Sub-sequence Dynamic Time Warping
finds optimal query/utterance alignments

Final (Y.I‘I;E
scores

Off-line “m-norm” score normalization
Single threshold for all keywords




QbE DNN-based Implementation

Iterative examples alignment

Unsupervised optimization of weights « 1%t pass BNF averaging produce meta-example
for the case of multiple examples * Gradient descent to pick detection-specific weights
* Combine with 1t pass results
———
Test-adaptive
Loodback 15t pass QbE scores
Query audio l 11““‘11
| :
IIIlIIIIIlII Multilingual Bottleneck Network ekl
== Query BNF m
||||I|||I|I|| - » . L ™ combination \‘ @
58 eainfeYaiaie | ]
illwfle = § 3 - SSCEOIOCIC - 3
=8 1‘ 'A’;"\‘é M S » Search BNF
Search audio / llll l
s oaffo il
Final QbE

scores




Application
Domain:
Air Traffic Control

Realistic and challenging
conditions

- Highly degraded acoustics:
English conversations
recorded from the ground
from planes and control
towers

- Acoustic mismatch in
enrollment and test: various

airports, controllers, planes,..

« Enrollment from keywords
pronounced mid-sentence,
more realistic

Probability of Miss (%)

Sample keyword 1 Sample keyword 2
plane tower plane tower

“runway two two right”  “precision thirty-five”

SRI's QbE system on Air Traffic Control data
results on different enrollment/test conditions are not directly comparable B 1% false alarm rate

60

50

/) ~

1 @) s
30 © s e N
\ ©y, 7 \
ee 0’9 \
N *0@ e& “
20 o Ko
Samm=

0
lex 2ex 3ex 5ex 10ex lex 2ex 3ex 5ex 10ex lex 2ex 3ex 5ex 10ex lex 2ex 3ex 5ex 10ex
[ o o e
enroll CONTROLLERS, enroll CONTROLLERS, enroll PILOTS, test enroll PILOTS, test
test CONTROLLERS test PILOTS CONTROLLERS PILOTS

QbE generalizes across conditions



Score ca | | bratiOn QbE Precision (averaged between 0-80% Pmiss) on ATC
. . . after calibration, with and without side information
using side info to o

reduce false alarms 65.00%

55.00%

45.00%

35.00%

. 25.00%

Use detections to self- 15 00%
calibrate and avoid over- 500%

-5.00%
matching when using
multiple examples

= Optimize on mismatched
data (i.e. enroll planes/test
towers, or enroll
towers/test planes) for
generalization

towers/towers towers/planes planes/towers planes/planes

W no side-info side-info

Average number of False alarms per
hour, per query, on unseen data

W no side-info side-info

O R N W b



Query
Qb E . SI ng ACO UStIC "' e H n'lel:;:!:r L
WO rd EmbEddlngS uses zero padding for hits

. search
fixed length query ‘

Lo — BHAN
\Ijgcr:)tlg fsmv%ch hl\lvlileoartdu = [ “H' H""’M*—*‘ - %+ e

Embeddings results in
replacing DTW with simple —r— N

cosine distance aliagay -l

uses BN features as input

e e e Aty — 1
'. 'm.‘ i ’_'.;‘:_.'.’ :-; = :‘___ — = —_'; e ow . .,% ...->.-11‘_

o AT e
L R ‘i =T
pereatent T
x," X, X,

In Yuan et al, embeddings are learned via CNNs,
with a triplet loss: uses two examples of same
word (target), and one negative example.



Remaining QbE
Challenges

Improve robustness of DNN-BNF / acoustic
embedding features to handle most challenging
acoustic conditions:

HF/VHF radio distortions

Bursts of noisy events

Distant speech

Balance discrimination with generalization:
Avoid confusions between similar phrases
‘Big black car’ vs ‘big black bear’

Enable inexact matching for applications in
morphologically rich languages



Conclusions and Future
Directions
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Conclusions

Deep learning approaches have led to big
improvements for all speech analytics tasks reviewed

Handling unseen conditions is still a challenge

Embeddings and bottleneck features improve performance
substantially

They are learned from data and represent what they have seen well

Noise robust features have been replaced, but there may be benefit in
using them for increased robustness of embeddings’ computation

Score Calibration is crucial for performance and
interpretability
Adaptive calibration helps for conditions in-the-wild
Calibration sensitive to proper data selection for the task

Confidence & Interpretability: When and why can a
system output be trusted?



Potential Direction:
Peeking into the
DNN Activations EUEp——
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- For unseen data, DNN activations S o
can be extremely noisy 23

- Extraction of a run-time
activation entropy can provide
some measure of DNN decision
confidence

1. Can we leverage this to predict when the
DNN is witnessing unseen data?

». Can we use this information to select data
for adaptation and calibration?

Entropy Measure

V. Mitra and H. Franco, “Interpreting DNN output layer Activations: A strategy to cope with Unseen Data in
Speech Recognition,” in Proc. of ICASSP 2018.

V. Mitra, H. Franco, C. Bartels, J. van Hout, M. Graciarena and D. Vergyri, “Speech Recognition In Unseen
And Noisy Channel Conditions,” in Proc. of ICASSP 2017
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Thank you!

2018 IEEE Spoken
Language Technology
Workshop
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