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Deep learning solved 
speech processing
Huge improvements –
especially given
§ Well-defined task and 

conditions
§ Large matched-condition 

datasets
§ Focused community effort 

over long period of time

Impact of Deep 
Learning on Speech 
Processing

Problem not completely solved … 
Challenges still remain

2%

7%

12%

17%

22%

2000 2004 2011 2012 2013 2014 2015 2016 2017

Automatic speech recognition
Hub5 - eval2000

human performance ASR performance

GMMs
CD-DNN

Sequence loss

7x more data
RNNLM
CNN-LSTM



© 2018 SRI International.  All Rights Reserved.  Proprietary
33

© 2018 SRI International.  All Rights Reserved.  Proprietary

From controlled 
recording conditions:

To Audio in the Wild:

Important 
Challenges for 
Speech Analytics Audio in the Wild:

§ Signal characteristics
§ Degraded signals

§ Distant microphones, distorted and noisy channels, 
reverberation, compression, etc.

§ Variability
§ Multiple speakers, speaker states and environments 
§ Nonstationary noises and distortions
§ Unexpected events

§ Test conditions
§ Mismatch with training
§ Short duration test samples, e.g. 1-5 sec
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Technology needs to 
work in real-world 
conditions

Addressing 
Real-world 
Challenges § Realistic Datasets

§ Exhibiting a variety of conditions present in real situations

§ Research Directions
§ Data augmentation
§ Feature design and learning
§ Deep learning models
§ Adaptation/calibration with limited data

§ Example Speech Analytics Tasks
§ Speech Activity Detection (SAD)
§ Speaker ID (SID)
§ Keyword Detection / Query by Example (QbE)
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Realistic Datasets

Exhibiting a variety of conditions 
present in real situations
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Datasets Available to 
the Community § NIST and other formal evaluations: datasets 

with challenging conditions
§ CHiME challenges (2011-2018): speech on speech, speech in 

noise, distant speech
§ NIST SRE eval data (1996-2018): telephone and interview speech 

data, including non-English
§ DARPA RATS data (2011-2014): mostly PTT, severe transmission 

noise

§ Contributions from the research community
§ ICSI meeting corpus (2004): multiple speakers, close-talking or 

distant mics
§ VoxCeleb (2017, 2018) : 1000’s of celebrity speakers in the wild

§ SRI’s recent contributions (SITW, VOICES)
§ Many speakers
§ Multiple speaker segments 
§ Wide range of “in the wild” artifacts
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Speakers In The Wild 
(SITW) 2016: 
A “Sample” of Real 
Conditions

Focus: Multi-speaker, cross-condition data from real-world 
recordings
Source: Open-source videos
Subjects: 299 public figures
Language: English (native and non-native)
Publicly Available for Research Purposes: 
www.speech.sri.com/projects/sitw/
Combination of Conditions:  e.g.: red carpet, Q&A in 
auditorium, ice bucket challenge

M. McLaren, L. Ferrer, D. Castan, 
and A. Lawson, “The speakers in 
the wild (SITW) speaker recognition 
database,” Interspeech 2016

Targeted conditions:
Traffic noise
Reverb
Multi-layer compression
Multi-speaker (1-8)
Conversational speech
Laughter
Phone channel

Background music
Non-linear effects
Natural Lombard effect
Crowd noise
Restaurant noise
Variable duration (6 sec – 2 hours)



© 2018 SRI International.  All Rights Reserved.  Proprietary
88

© 2018 SRI International.  All Rights Reserved.  Proprietary

Focus: Distant microphone 

recordings – variable but 

controlled conditions

Source: 300 speakers from 

LibriSpeech audio (open source), 

re-recorded in furnished rooms 

with background noise

C. Richey, M. A. Barrios, Z. Armstrong, C. 
Bartels, M. Graciarena, A. Lawson, M. K. 
Nandwana et al., “Voices obscured in 
complex environmental settings (VOICES) 
corpus,” INTERSPEECH 2018

VOICES: 

voices.lab41.org

free download

Microphone and loudspeaker placement 

in one of the collection rooms

§ 4 background noise conditions played from 

distractor speakers

§ Music and TV noise from single loudspeaker 

§ Babble noise from all 3 loudspeakers

§ 15dB SNR measured near mic 1

§ 1440 h of retransmitted distant audio (120h/mic)
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• 4 studio mics (larger circles)

• 8 lavalier mics (smaller circles)

• Mic #9 is under a table

• Mics #10 & #11 are attached to 

the ceiling

• Mic #12 is in the wall

• Speaker can move/rotate
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Need Additional 
Datasets and 
Robust  Learning 
Approaches

§ Deep learning approaches benefit from large 
amounts of data 

§ Need realistic datasets with wide range of 
extrinsic and intrinsic variability

§ For example:
§ Outdoor collections
§ Longitudinal data of same speakers
§ Intrinsic speaker variability (emotion, voice projection, 

health, style)
§ E.g.  SRI-FRTIV (2009) corpus focused on speaking effort

Ø Need learning approaches that use less data 
and can generalize to unseen conditions
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Research Directions for 
Robust Speech Analysis

§ Data augmentation
§ Feature design
§ Deep learning and feature 

learning
§ Adaptation/calibration
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Data 
Augmentation

T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech 
recognition,” in Proceedings of INTERSPEECH, 2015

§ Real-world data often more diverse than 
development corpora 

§ Augment corpora to compensate
§ Fabricate data: re-record or simulate 

channel/reverberation
§ Process signals to simulate variability: vocal tract 

length variations, speech rate changes, channel 
effects, etc.

§ Successful when target properties are known 
and can be simulated (e.g. reverberation 
challenges) 

§ Hard to generalize to unseen/unexpected 
conditions
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Feature 
Design for 
Noise 
Robustness

V. Mitra, H. Franco, R. M. 
Stern, J. Van Hout, L. Ferrer, 
M. Graciarena, W. Wang, D. 
Vergyri, A. Alwan, and J. H. 
Hansen, “Robust features in 
deep-learning-based speech 
recognition,” in New Era for 
Robust Speech Recognition. 
Springer, 2017, pp. 187–217

§ Each has advantages 
§ All designed to work in noisy channels
§ Parameters heavily optimized on data
§ Combining features often improves results – no single winner

Feature Site Characteristics
PNCC CMU Uses power-law nonlinearity and noise suppression
Gabor ICSI Inspired by high level features discovered in cortical 

regions of the brain 
DOC/SYDOC SRI Uses damped oscillator and synchrony processing
NMC/MMeDuSA SRI Uses modulation spectrum and root compression
MHEC UTD Perceptual MVDR; quantile cepstral dynamics 

normalization
MbCombF0 UCLA Variable frame rate analysis; temporal modulation

processing; compressive sensing

Examples of auditorily and perceptually motivated noise-robust 
features developed under RATS (2010-2014)
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§ Deep Neural Nets (DNNs) 
significantly improved ASR

§ Deep Convolutional Neural 
Nets (CNNs) emerged as an 
alternative demonstrating 
robustness to background 
noise

Deep Learning 
Models Increased 
Robustness

Huang, J., Li, J., & Gong, Y. “An analysis of convolutional neural networks for 
speech recognition”, ICASSP, 2015.
Y. Qian and P. C. Woodland, “Very deep convolutional neural networks for 
robust speech recognition,” in IEEE SLT, 2016 
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Several architectures have 
been explored to improve 
robustness

CNN variants:
Time-Frequency 
Convolution 
(TFCNN)

V. Mitra and H. Franco, "Time-frequency convolutional networks for 
robust speech recognition," in Proc. ASRU, 2015.

§ SRI proposed TFCNNs in IARPA ASpIRE challenge
§ Convolution performed across both time and frequency scales
§ Worked very well combined with noise-robust features



© 2018 SRI International.  All Rights Reserved.  Proprietary
1515

© 2018 SRI International.  All Rights Reserved.  Proprietary

Bottlenecks (BNs)
- replacing noise-robust 
features

Features based on 
deep-learning 
models

Bottleneck features discriminatively learned through 
supervised DNN models

Spliced BN 
features

Spliced spectral 
features

Training data

Bottleneck

Senone 
posteriors

L. Bai, P. Jančovič, M. Russell, and P. Weber, 
“Analysis of a low-dimensional bottleneck neural 
network representation of speech for modelling 
speech dynamics,” in Proc. Interspeech 2015
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Bottlenecks from 
autoencoders 

Features based on 
deep-learning 
models

BN features learned through supervised DNN 
models or unsupervised autoencoders

Stacked BNs have also been used very successfully 
for multiple tasks 

~

Spliced BN 
features

Spliced spectral 
features

Training data

Bottleneck



© 2018 SRI International.  All Rights Reserved.  Proprietary

1717

© 2018 SRI International.  All Rights Reserved.  Proprietary

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system
The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system
3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t� 2, t�
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t�2, t, t+2} and {t�3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t � 8 to
t+ 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x(n)

1:T ) is the probabil-
ity of speaker k given T input frames x

(n)
1 ,x(n)

2 , ...x(n)
T . The

quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = �
NX

n=1

KX

k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at

1000

Acoustic embeddings:
Bottlenecks are frame level, 

while embeddings learn to map 

variable-length segments to 

fixed-length vectors

K. Levin, K. Henry, A. Jansen, and K. Livescu, 
“Fixed-dimensional acoustic embeddings of 
variable-length segments in low-resource 
settings,” in Proc. ASRU, 2013

M. Rouvier, P.-M. Bousquet, and B. Favre, 
“Speaker diarization through speaker 
embeddings,” in Signal Processing Conference 
(EUSIPCO), 2015

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, 
and S. Khudanpur, “X-vectors: Robust DNN 
embeddings for speaker recognition,”, ICASSP, 
2018

Features based on 

deep learning 

models

§ Embedding layers 

capture information 

relevant to a task 

while removing 

distortion that may 

be present in the 

feature space (robust)

§ Similar classes of signals 

have similar embeddings

§ Typical input is MFCCs –

have also used PNCCs

Example architecture for 
speaker ID embeddings
(Snyder et al., 2018)
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Adaptation to  
Encountered 
Conditions 

§ Exploit available information – including original training data 
and test data - in the best way possible
§ Unsupervised adaptation: applied when new, unseen conditions are 

encountered and there are no labels
§ Data selection: dynamically sub-select the most appropriate original 

data from inside the model
§ Data augmentation: mimic target conditions

§ Re-training typically involves only the last layers of the model

Adapted
Model

Data

Original 
Model

Field Adaptation

Similarity 
Measure

Data Re-train

Field 
Data

Data
Subset Original 

Data
Data              

Augmented
Data



© 2018 SRI International.  All Rights Reserved.  Proprietary
1919

© 2018 SRI International.  All Rights Reserved.  Proprietary

Classification decisions 
are made by applying a 
threshold to system 
scores

Need for 
Calibration

Speech 
Class.

System

Reject / Validate speech 
class distributions

Threshold selected 
to minimize a 

decision cost function

0

Test Data
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§ With signals in the wild, 
scores shift across 
different conditions

§ With a single threshold, 
system performance on 
unseen conditions 
becomes UNRELIABLE

Need for 
Calibration

Speech 
Class.

System
Noisy

Environment

Example comparison 
conditions

Distant Speech

Telephone
channel

Reject / Validate speech 
class distributions

telephone

Distant Speech

Noisy conditions

Threshold selected 
on one condition

…
Does not generalize
to other conditions0

0

0
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In an ideal world, we 
would pick a decision 
threshold for each 
possible condition…

Need for 
Calibration

Each condition 
needs a different 

decision threshold to 
operate as expected

Speech 
Class.

System
Noisy

Environment

Distant Speech

Telephone
channel

Example conditions

telephone

Distant-Speech

Noisy Environment

0

0

0

Reject / Validate speech 
class distributions
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Must calibrate scores to 
a common space
§ Then a single threshold can 

be applied with confidence 
across all conditions

Need for 
Calibration

Speech 
Class.

System
Noisy

Environment

Distant Speech

Telephone
channel

Example conditions
Reject / Validate speech 

class distributions

Distant Speech

Noisy Environment

0

0

0

telephone

Optimal
single threshold

across conditions

N. Brümmer and J. Du Preez, "Application-
independent evaluation of speaker detection, 
" Computer Speech & Language 20, no. 2-3 (2006): 
230-275
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Example Speech 
Analytics Tasks
§ Speech Activity Detection (SAD)
§ Speaker Identification (SID)
§ Keyword Detection /

Query by Example (QbE)
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Goal: detect presence and 
temporal location of 
speech in audio signals
§ Easy in clean conditions
§ Gets harder as environment 

or channel get noisier

Towards a fast, effective 
and robust solution

Speech Activity 
Detection

Downstream automated speech processing 
or human listeners

To process speech you first 
need to find it!

SpeechNoise Noise

SAD significantly reduces the amount of data that needs to be 
processed by a smart interactive device or data mining system

Critical component for follow up systems:
If SAD misses speech segment, no info can be extracted
If SAD false alarms, almost certain error later in pipeline
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Noise-robust 
features + GMMs

Complex multi-system 
combination

2014 SRI 
SAD Pipeline

MFCC

MbCombF0

Combo

SACC

Speech

Detected 
speech  
regions

GMM

SCORE
COMBINER

DCT

PLP

MbCombF0

Combo

SACC

GMMDCT

MEDUSSA

MbCombF0

Combo

SACC

GMMDCT

Score

* Systems had 
different component 
parameters
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§ Great performance on seen data 
after global calibration of fused 
system (over 10-20% 
improvement over GMM)

§ More complex yet

§ Feature combination at multiple 
levels

§ Test-adaptive calibration crucial 
for generalizing to new data 

§ Unsupervised adaptation not 
always successful

2015 DNN-based 
SAD

MFCC NMCC TDGCC PNCC PLPCombo Combo ComboKaldi Kaldi

CHN DNN BN

Norms Norms Norms Norms

Context
SAD DNN BN

Test-Adaptive 
Calibration

Test-Adaptive
Calibration

Fusion
Unsup Adaptation

Norms

Norm Norm Norm Norm Norm

DNN Fusion

LLR Generation + Smoothing

NormsNormsNormsNorms

Context ContextContextContext

Segments + Pad Segments + Pad Segments + Pad

Norms



© 2018 SRI International.  All Rights Reserved.  Proprietary
2727

© 2018 SRI International.  All Rights Reserved.  Proprietary

SAD today § Two important goals were not achieved with prior eval
systems:
§ Generalization to unseen, highly variable, noisy conditions 
§ High speed and low memory usage

§ Developed single MFCC-based DNN system
§ Multi-condition training data
§ Feature normalization designed to minimize false alarms 

§ Applied simplified system in OpenSAT 2017 
§ Comparable to best performing system on Video (VAST) track: 

real-world videos: spontaneous speech, background music, noises

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

TeamA+
SRI-

6xfusion

SRI-
6xfusion

SRI-
single

DC
F

6x faster!
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For Data In-the-Wild

Remaining SAD 
Challenges Adaptation and calibration to new conditions with

§ Little data

§ Unbalanced annotations

§ Unsupervised data

Accuracy in the face of variable/unseen conditions
§ Recent approaches explore use of LSTM models and acoustic 

embeddings 

Often hard to draw line between speech and 
nonspeech
§ Live human vs. TV/radio, intelligible speech vs unintelligible 

babble, singing
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Goal: Identify a speaker 
known to the system, in 
potentially very different 
conditions from what it 
has seen

From UBM-based 
i-vectors and noise-
robust features to deep 
learning and embeddings

Speaker ID Enrollment
§ Get a sample of speech to model each speaker
Recognition
§ Compare incoming speech to known speaker models

Challenging speech classification task since typically:
§ there is very little training data for target classes (speakers)
§ enrollment and test conditions for a speaker are mismatched

Match Non-Match

Indoors

(Whisper)

Speaker 
ID 

System

Hi, this is Steve  
speaking outdoors

Outdoors
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Need effective and 
robust frontend 
representation and a 
modeling approach that 
can remove sources of 
variability

Standard Approach 
2012: 
UBM+ i-vectors + 
Bayesian Backend 

I-vectors: project variable-duration utterance onto a low-
dimensional vector, typically of a few hundred components 

Backend classification and calibration modules measure 
similarity to target speaker
§ PLDA: models speaker and intersession variability in the space of i-

vectors, based on joint-factor analysis work

N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Frontend 
factor analysis for speaker verification,” IEEE Trans. ASLP, vol. 19, May 2010

L. Ferrer, M. McLaren, N. Scheffer, Y. Lei, M. Graciarena, and V. Mitra, “A 
noise-robust system for NIST 2012 speaker recognition 
evaluation”, INTERSPEECH 2013

BackendUBM/i-vector framework

GMM-

UBM
i-Vector PLDA

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Calibrated	
Score	

Train	calibra0on	
model	and	

calibrate	score	
Enrol	

Test	

Find	similar	
calibra0on	

trials	

Speaker	ID	System	

Enough	
target	
samples	
found?	

yes	

no	

Raw	Score	

Sim.	Thr	

Score	not	
calibrated!	

Fig. 1. The TBC approach. Raw scores are computed for the test trial
(enrollment and test samples) using a speaker recognition system. Calibration
samples are selected based on their similarity to the enrollment and test
samples using a minimum similarity threshold. If enough calibration target
trials are selected, a calibration model is learned and applied to the trial. Else,
the score is not calibrated.

A. Similarity Metrics

The key step in this approach is the selection of calibration
trials. This selection is done based on a similarity metric
between the trial’s samples and the candidate calibration
samples. In this work we evaluate three different metrics.

I-vector (IV) similarity: The i-vector similarity between
two samples is given by the dot product between the i-vectors
from the two samples divided by the product of the norms of
the two i-vectors.

UAC-based (UAC) similarity: This was the metric pro-
posed in the original TBC paper. A set of universal audio
characterization (UAC) models [10] are trained to predict
different aspects of an audio signal, which could include
gender, language, channel, noise type and level, and so on.
Each UAC model consists of a Gaussian model for each class
to be predicted (for example, female and male for the gender
UAC model) with shared covariance matrix. The features
modeled by the UAC are the same i-vectors extracted by the
speaker recognition system. The output of each UAC are the
posterior probabilities for each of the corresponding classes.
The posteriors from all UAC models are concatenated and each
components is normalized by replacing it with the rank of the
value with respect to all the values for that component in the
calibration data. Finally, the similarity between two samples is
given by the dot product between the rank-normalized vectors
of UAC posteriors for the samples.

Condition PLDA (CPLDA) similarity: The condition
probabilistic linear discriminant analysis (PLDA) similarity
proposed in this work is given by the score produced by a
PLDA model trained to estimate the log-likelihood ratio of the
samples’ i-vectors given the hypothesis that the two samples
come from the same condition versus the hypothesis that they
come from different conditions. The model is trained with data
from many different speakers under many different conditions.
Each condition is given by a combination of gender, language,
channel, noise type, noise dB level, etc.

The UAC and the CPLDA metrics are conceptually similar
in that they are trained to be independent of the similarity
between the speakers in the two samples, focusing on the
similarity between their conditions. The IV metric, on the
other hand will be sensitive to both the speakers and the
conditions in the two samples. In principle, this is not a

desirable characteristic of a metric for our purposes. We wish
to select calibration data that is similar to the test trial in
terms of condition so that any effect of the condition on the
score can be neutralized by the calibration procedure. If the
similarity metric is affected by the characteristics of the voices
in the test samples, then we will tend to select calibration data
that is similar to the test samples in terms of voice. In the
extreme, if the voices in the enrollment and test sides of the
trial are very different, we would not be able to find enough
target calibration trials that are similar to the test trial for
enrollment and test sides. As a consequence, we would not
be able to calibrate the easier impostor samples for lack of
enough target samples to train the model. This may not be an
issue in some forensic applications where only trials that are
difficult reach the forensic expert. In this case, it would be
appropriate to select calibration data that is similar to the test
trial both in terms of conditions and voices. In this work we
will not consider this case, since our test data is not restricted
to hard impostor trials. Nevertheless, as we will see, the IV
metric performs quite well, indicating, as is well-known, that
the dot product between i-vectors is highly affected by the
conditions in the samples.

B. Selection Algorithm
The selection of calibration data is governed by three param-

eters: a similarity threshold (SimThr), a maximum number of
target trials (MaxTgt) and a minimum number of target trials
(MinTgt). Given these values, and a given test trial, composed
of an enrollment and a test sample1, the selection algorithm
proceeds as follows. The similarity values from the trial’s
enrollment sample to all enrollment samples in the calibration
data and from the trial’s test sample to all test samples in
the calibration data are computed. All calibration (enrollment
and test) samples with a similarity to the corresponding trial’s
side larger than a certain threshold t are selected and the trials
obtained by pairing all selected enrollment samples against all
selected test samples are used to train a calibration model for
the test trial. The threshold t is searched among all similarity
values larger than the input parameter SimThr using a binary
search that stops when the number of target trials resulting
from the selection is approximately MaxTgt (allowing for an
error of plus or minus 5% of MaxTgt, to speed up the search)
or when t is equal to SimThr. The threshold t used for selection
will then never be smaller than SimThr and it might be bigger
if more than MaxTgt target samples would be selected when
t = SimThr. Furthermore, the number of target samples
selected may be smaller than MaxTgt. If the number is smaller
than MinTgt then the trial is not calibrated. Figure 2 shows a
toy example for the selection process.

Note that our decision to reject a trial when not enough
matched calibration data can be selected could be replaced
by other strategies. For example, the global calibration model
could be used to calibrate that trial, or the LLR could be set to
0.0. Yet, this would mean that the resulting LLR might be very
different from what a well-calibrated LLR would have been.
Our goal in this work is to never allow a trial to be wrongly

1In this work we will only consider single-enrollment single-test trials.
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Fig. 1. The TBC approach. Raw scores are computed for the test trial
(enrollment and test samples) using a speaker recognition system. Calibration
samples are selected based on their similarity to the enrollment and test
samples using a minimum similarity threshold. If enough calibration target
trials are selected, a calibration model is learned and applied to the trial. Else,
the score is not calibrated.

A. Similarity Metrics

The key step in this approach is the selection of calibration
trials. This selection is done based on a similarity metric
between the trial’s samples and the candidate calibration
samples. In this work we evaluate three different metrics.

I-vector (IV) similarity: The i-vector similarity between
two samples is given by the dot product between the i-vectors
from the two samples divided by the product of the norms of
the two i-vectors.

UAC-based (UAC) similarity: This was the metric pro-
posed in the original TBC paper. A set of universal audio
characterization (UAC) models [10] are trained to predict
different aspects of an audio signal, which could include
gender, language, channel, noise type and level, and so on.
Each UAC model consists of a Gaussian model for each class
to be predicted (for example, female and male for the gender
UAC model) with shared covariance matrix. The features
modeled by the UAC are the same i-vectors extracted by the
speaker recognition system. The output of each UAC are the
posterior probabilities for each of the corresponding classes.
The posteriors from all UAC models are concatenated and each
components is normalized by replacing it with the rank of the
value with respect to all the values for that component in the
calibration data. Finally, the similarity between two samples is
given by the dot product between the rank-normalized vectors
of UAC posteriors for the samples.

Condition PLDA (CPLDA) similarity: The condition
probabilistic linear discriminant analysis (PLDA) similarity
proposed in this work is given by the score produced by a
PLDA model trained to estimate the log-likelihood ratio of the
samples’ i-vectors given the hypothesis that the two samples
come from the same condition versus the hypothesis that they
come from different conditions. The model is trained with data
from many different speakers under many different conditions.
Each condition is given by a combination of gender, language,
channel, noise type, noise dB level, etc.

The UAC and the CPLDA metrics are conceptually similar
in that they are trained to be independent of the similarity
between the speakers in the two samples, focusing on the
similarity between their conditions. The IV metric, on the
other hand will be sensitive to both the speakers and the
conditions in the two samples. In principle, this is not a

desirable characteristic of a metric for our purposes. We wish
to select calibration data that is similar to the test trial in
terms of condition so that any effect of the condition on the
score can be neutralized by the calibration procedure. If the
similarity metric is affected by the characteristics of the voices
in the test samples, then we will tend to select calibration data
that is similar to the test samples in terms of voice. In the
extreme, if the voices in the enrollment and test sides of the
trial are very different, we would not be able to find enough
target calibration trials that are similar to the test trial for
enrollment and test sides. As a consequence, we would not
be able to calibrate the easier impostor samples for lack of
enough target samples to train the model. This may not be an
issue in some forensic applications where only trials that are
difficult reach the forensic expert. In this case, it would be
appropriate to select calibration data that is similar to the test
trial both in terms of conditions and voices. In this work we
will not consider this case, since our test data is not restricted
to hard impostor trials. Nevertheless, as we will see, the IV
metric performs quite well, indicating, as is well-known, that
the dot product between i-vectors is highly affected by the
conditions in the samples.

B. Selection Algorithm
The selection of calibration data is governed by three param-

eters: a similarity threshold (SimThr), a maximum number of
target trials (MaxTgt) and a minimum number of target trials
(MinTgt). Given these values, and a given test trial, composed
of an enrollment and a test sample1, the selection algorithm
proceeds as follows. The similarity values from the trial’s
enrollment sample to all enrollment samples in the calibration
data and from the trial’s test sample to all test samples in
the calibration data are computed. All calibration (enrollment
and test) samples with a similarity to the corresponding trial’s
side larger than a certain threshold t are selected and the trials
obtained by pairing all selected enrollment samples against all
selected test samples are used to train a calibration model for
the test trial. The threshold t is searched among all similarity
values larger than the input parameter SimThr using a binary
search that stops when the number of target trials resulting
from the selection is approximately MaxTgt (allowing for an
error of plus or minus 5% of MaxTgt, to speed up the search)
or when t is equal to SimThr. The threshold t used for selection
will then never be smaller than SimThr and it might be bigger
if more than MaxTgt target samples would be selected when
t = SimThr. Furthermore, the number of target samples
selected may be smaller than MaxTgt. If the number is smaller
than MinTgt then the trial is not calibrated. Figure 2 shows a
toy example for the selection process.

Note that our decision to reject a trial when not enough
matched calibration data can be selected could be replaced
by other strategies. For example, the global calibration model
could be used to calibrate that trial, or the LLR could be set to
0.0. Yet, this would mean that the resulting LLR might be very
different from what a well-calibrated LLR would have been.
Our goal in this work is to never allow a trial to be wrongly

1In this work we will only consider single-enrollment single-test trials.
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Segment LevelFrame Level

§ Replace i-vectors with 
embeddings extracted from 
a feed-forward DNN 

§ Long-term speaker 
characteristics are captured 
by a temporal pooling layer 
§ Mean and standard deviation 

on the segment (2 - 10s)

Low-dim representation 
with speaker 
embeddings (2017)
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M. K. Nandwana, J. van Hout, M. McLaren, A. Stauffer, C. Richey, A. Lawson, M. 
Graciarena, “Robust Speaker Recognition from Distant Speech under Real 
Reverberant Environments Using Speaker Embeddings,” in ISCA INTERSPEECH 2018

Benchmarking 
progress in realistic 
conditions

5.72%

14.69%

17.93%

5.16%

12.39%

8.18%

3.13%
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5.75%
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and noise)
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Current SID approach 
works as well on 2 sec 
audio segments as pre-
embeddings did on 8 sec

Effectiveness of 
embeddings in 
short durations

At 5 sec duration, embeddings reduce error by 45%
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Need for Field 

Adaptation

§ Big degradation in mismatched 

conditions (from RATS data)

§ Simply adding data to retrain PLDA 

does NOT work due to underlying 

assumptions on speakers’ 

distributions among different 

conditions across original and 

adaptation data

§ Source-normalization makes 

adaptation data compatible to 

original model
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MISMATCH

ADAPT (PLDA)

ADAPT (SN-PLDA)

Source Normalization (SN)
enables gain from adaptation data

Further research is needed to better exploit 

the limited adaptation data

M. McLaren, and D. Van Leeuwen, “Source-normalized LDA for robust speaker 
recognition using i-vectors from multiple speech sources,” Audio, Speech, and 
Language Processing, IEEE Transactions on 20 (3), 755-766, 2012
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§ Key to good calibration: use data 
that properly represents the trial 
conditions

§ In the wild, conditions are 
different for every trial

§ Relevant trials are found with a 
metric of similarity between the 
acoustic conditions of two signals

§ When not enough trials are 
selected to train a calibration 
model, the trial is not calibrated
§ Better not to calibrate at all then 

calibrate badly

Trial-Based 
Calibration (TBC): 
Towards fail-safe 
calibration

M. McLaren, A. Lawson, A., L. Ferrer, N. Scheffer, and Y. Lei, “Trial-based calibration for 
speaker recognition in unseen conditions”, In Odyssey 2014

L. Ferrer, M. K. Nandwana, M. McLaren, D. Castan, and A. Lawson. "Toward Fail-Safe 
Speaker Recognition: Trial-Based Calibration With a Reject Option”.  IEEE/ACM Transactions 
on Audio, Speech, and Language Processing 27, no. 1 (2019): 140-153

Calibrated 
Score

Train calibration 
model and calibrate 

score
Enroll

Test

Find similar 
calibration 

data

Speech classification System

Enough 
samples 
found?

yes

no

Raw Score

Score not 
calibrated!

Available
Calibration Data

0

0.1

0.2

0.3

0.4

SITW SRE16-eval

Actual DCF 
after calibration 

of raw scores
global calibr.

TBC
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Remaining SID 
Challenges Multi-speaker SID

§ Data in the wild is hardly ever single speaker

Intrinsic speaker variability

§ Impact by  emotion, stress, vocal effort, etc.

Optimal speaker embedding computation
M, McLaren, D. Castan, M. Kumar Nandwana, L. Ferrer and E. Yilmaz. “How to 
train your speaker embedding extractor” Speaker Odyssey 2018

Unsupervised adaptation to new conditions

§ Trial based calibration is one approach 

Confidence and calibration
§ When do we trust the system output?

§ How to avoid miscalibration
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Robust keyword 
detection under very 
challenging acoustic 
conditions

Query-by-Example 
(QbE)
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§ When ASR is not accurate 
enough, focus only on keywords

§ Keyword Spotting (KWS) finds word 
probabilities using the most likely 
word sequences from ASR
§ Degrades for OOVs or for low ASR 

performance
§ Query-by-Example (QbE) lets the user 

select an audio sample and search 
for other occurrences of that 
keyword
§ Language independent
§ One-shot learning

Keyword Spotting and 
Query-by-Example: 
Finding Important 
Spoken Words

Automatic Speech 
Recognition (ASR)

Keyword list
• “hello”
• “a carpenter”

Keyword Spotting 
(KWS)

“hello” 0.2-0.4s prob = 0.92
“a carpenter” 1.1-1.6s prob = 0.8

“hello i am a carpenter”

Query by Example
(QbE)

“carpenter”

“carpenter” 0.5-0.7s prob = 0.96

“Hello, I am a 
carpenter”
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E. Yılmaz, J. van Hout and H. Franco. 
“Noise-Robust Exemplar Matching 
for Rescoring Query-by-Example 
Search.” IEEE ASRU 2017

QbE DNN-based 
Implementation

Noise robust SAD is needed to remove silence 
and noise from the query
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QbE DNN-based Implementation
Word embedding representation

Trained on multi-lingual data set

Time-domain GFB features for 
noise robustness
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QbE DNN-based Implementation
Search

Sub-sequence Dynamic Time Warping
finds optimal query/utterance alignments

Off-line “m-norm” score normalization
Single threshold for all keywords
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QbE DNN-based Implementation
Unsupervised  optimization of weights 
for the case of multiple examples

• Iterative examples alignment
• 1st pass BNF averaging produce meta-example
• Gradient descent to pick detection-specific weights
• Combine  with 1st pass results
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Realistic and challenging 
conditions
§ Highly degraded acoustics: 

English conversations 
recorded from the ground 
from planes and control 
towers

§ Acoustic mismatch in 
enrollment and test: various 
airports, controllers, planes,..

§ Enrollment from keywords 
pronounced mid-sentence, 
more realistic

Application 
Domain: 
Air Traffic Control “runway two two right”     “precision thirty-five”

towerplane

Sample keyword 1 Sample keyword 2

towerplane
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SRI's	QbE	system	on	Air	Traffic	Control	data
results	on	different	enrollment/test	conditions	are	not	directly	comparable 1%	false	alarm	rate

QbE generalizes across conditions

QbE leverages 

multiple examples
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Use detections to self-
calibrate and avoid over-
matching when using 
multiple examples
§ Optimize on mismatched 

data (i.e. enroll planes/test 
towers, or enroll 
towers/test planes) for 
generalization

Score calibration 
using side info to 
reduce false alarms

-5.00%

5.00%

15.00%

25.00%

35.00%

45.00%

55.00%

65.00%

75.00%

towers/towers towers/planes planes/towers planes/planes

QbE Precision (averaged between 0-80% Pmiss) on ATC
after calibration, with and without side information

no side-info side-info

0
1
2
3
4

Average number of False alarms per 
hour, per query , on unseen data

no side-info side-info
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Replacing BN features 
vectors with Word 
Embeddings results in 
replacing DTW with simple 
cosine distance

S. Settle, K. Levin, H. Kamper, and K. Livescu, 
“Query-by-example search with 
discriminative neural acoustic word 
embeddings”, InterSpeech, 2017.
Y. Yuan, C. Leung, L. Xie, H. Chen, B. Ma and 
H. Li, ”Learning Acoustic Word Embeddings 
with Temporal Context for Query-by-
Example Speech Search”, InterSpeech, 2018

QbE using Acoustic 
Word Embeddings 

In Yuan et al, embeddings are learned via CNNs, 
with a triplet loss: uses two examples of same 
word (target), and one negative example.

uses zero padding for 
fixed length query

uses BN features as input 
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Remaining QbE
Challenges Improve robustness of DNN-BNF / acoustic 

embedding features to handle most challenging 
acoustic conditions:
§ HF/VHF radio distortions
§ Bursts of noisy events
§ Distant speech

Balance discrimination with generalization:
§ Avoid confusions between similar phrases

§ ‘Big black car’ vs ‘big black bear’
§ Enable inexact matching for applications in 

morphologically rich languages
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Conclusions and Future 
Directions
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Conclusions
§ Deep learning approaches have led to big 

improvements for all speech analytics tasks reviewed
§ Handling unseen conditions is still a challenge

§ Embeddings and bottleneck features improve performance 
substantially
§ They are learned from data and represent what they have seen well
§ Noise robust features have been replaced, but there may be benefit in 

using them for increased robustness of embeddings’ computation

§ Score Calibration is crucial for performance and 
interpretability
§ Adaptive calibration helps for conditions in-the-wild

§ Calibration sensitive to proper data selection for the task

§ Confidence & Interpretability: When and why can a 
system output be trusted?
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§ For unseen data, DNN activations 
can be extremely noisy

§ Extraction of a run-time 
activation entropy can provide 
some measure of DNN decision 
confidence
1. Can we leverage this to predict when  the 

DNN is witnessing unseen data?

2. Can we use this information to select data 
for adaptation and calibration?

Potential Direction: 
Peeking into the 
DNN Activations 

Entropy Measure

V. Mitra and H. Franco, “Interpreting DNN output layer Activations: A strategy to cope with Unseen Data in 
Speech Recognition,” in Proc. of ICASSP 2018.
V. Mitra, H. Franco, C. Bartels, J. van Hout, M. Graciarena and D. Vergyri, “Speech Recognition In Unseen 
And Noisy Channel Conditions,” in Proc. of ICASSP 2017

Lot of spurious activations due to noise
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2018 IEEE Spoken
Language Technology 
Workshop

Thank you!
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SRI International:
Independent nonprofit research 
center in Silicon Valley, founded 
in 1946 by Stanford University

Core business: Science and technology 
solutions for government and 
businesses worldwide

• Basic research
• Systems and solutions
• Venture incubation
• Technology licensing

4000+ patents              70+ spin offs

1,700 employees, 30 labs, 21 locations

SFO

Now hiring: https://www.sri.com/careers

First computer 
mouse

(acquired by Apple in 2008)

First ARPANET and 
internetworking nodes

Electronic
Banking

First telerobotic 
surgical system

Ultrasound for 
Medical diagnostics

1st drug for malaria; 
drugs for lymphoma

Cyber 
Security

Dept. of Education 
2010 tech plan

(1994)

(2014)


