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(Written) word embeddings

I Representation of written words as continuous-valued vectors

I Makes it easy to quantify word similarity

I Often used as pretrained parameters in neural models

I Examples: latent semantic analysis, word2vec, GloVe



(Written) word embeddings

Usually, we want semantically similar words to have similar vectors



Should we embed spoken words as vectors?

I ( - ) Speech is already continuous-valued
I ( - ) Spoken words have lots (a continuum!) of variants

I Speaking rate, pronunciation variant, speaker, acoustic
environment, intonation, fatigue, inebriation...

I ( - ) So, can’t write down a matrix of spoken word embeddings
I (+ ) But spoken words are hard to compare... vectors are

much easier



Talk preview

I There is a growing body of work related to acoustic word
embeddings and related ideas

I This talk: Exploration of 3 ideas
I Part I: Acoustic word embeddings
I Part II: Acoustically grounded word embeddings
I Part III: Acoustic-semantic embeddings via visual grounding



Part I:
Acoustic word embeddings

Katie Henry Aren Jansen Herman Kamper Keith Levin

Shane Settle Weiran Wang

[ASRU 2013] Levin, Henry, Jansen, & Livescu, “Fixed-dimensional acoustic
embeddings of variable-length segments in low-resource settings,” ASRU 2013
[SLT 2016] Settle & Livescu, “Discriminative acoustic word embeddings:
Recurrent neural network-based approaches,” SLT 2016
[Interspeech 2017] Settle, Kamper & Livescu, “Query-by-Example Search with
Discriminative Neural Acoustic Word Embeddings,” Interspeech 2017



Acoustic word embeddings

I Computed by a function that maps from a spoken word to a
vector

I “Spoken word” = speech signal of arbitrary length
corresponding to a word

[Figure credit: Herman Kamper]



What makes a good acoustic word
embedding?

I Same-word signals should have similar vectors: factor out
speaker, acoustic environment, ...

I Phonetically similar words should have similar vectors?
I Semantically similar words should have similar vectors?

[Figure credit: Herman Kamper]



Applications of acoustic word embeddings

Any task involving similarity between speech segments
I Query-by-example search

I Whole-word speech recognition

I Spoken term discovery

[Figure credit: Herman Kamper]



Query-by-example search

Query

Database

[Figure credit: Herman Kamper]

Applications:

I Open-vocabulary search

I Search in low-resource/unwritten/unknown language data

I Multilingual search



Query-by-example: Classic approach

[Figure credit: Proenca et al. 2015]

Dynamic time warping (DTW)

I Slow

I Hard to tune (frame distance function, move costs)

I Sensitive to nuisance variations: noise, speaker, ...

I Hard to learn end-to-end



Query-by-example with acoustic word
embeddings

Query
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An initial task: Word discrimination
Proxy task for query-by-example

I Input: Pair of acoustic signals
I Output: “Same word” or “different words”
I Baseline approach: Threshold the DTW distance
I Evaluation: Average precision (AP) over all thresholds
I Test set: ∼ 11k word segments (∼ 60M pairs)
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First embedding approach:
Template-based [ASRU 2013]

I Embedding of word segment X is a vector of distances to a
set of other (template) segments {R1, . . . ,Rm},m ≈ 10, 000:

f (X) = [dDTW (X,R1) . . . dDTW (X,Rm)]

I Then (optionally) reduce dimensionality



Word discrimination results
Embedding-based approach: Threshold the cosine distance

between the embeddings dcos(x1, x2) = 1− xT1 x2
‖x1‖‖x2‖

I Template-based embeddings outperform vanilla DTW
I DTW with learned distance function does better, but requires
∼ 200 hours of labeled data
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AWE:
Template-based

[ASRU 2013]



Neural embeddings: CNN-based [ICASSP 2016]

I Input: MFCCs, padded to fixed duration

I Model: nconv convolutional + nfull fully connected layers

I Embedding is activation vector of top layer

X

f (X)



Neural embeddings: RNN-based [SLT 2016]

I Input: MFCCs (without padding)
I Model: nrec recurrent + nfull fully connected layers
I Embedding is activation vector of final fully connected layer
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Training objectives

Word classifier log loss

I Add a softmax layer to predict word w

I l(x,w) = log p(w |x)

Contrastive (triplet) loss

I Bring together same-word pairs, separate different ones

l(x1, x2) = max{0,m + dcos(x1, x2)− dcos(x1, x
−)}

where x− = random (or hard) negative example, m = margin

I Weaker supervision (no word labels, only same-word pairs)



Word discrimination results
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AWE:
Template-based

[ASRU 2013]

AWE:
CNN classifier 
[ICASSP 2016]

AWE:
CNN contrastive 
[ICASSP 2016]

AWE:
RNN classifier 

[SLT 2016]
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[SLT 2016]



Visualization: RNN embeddings

2-dimensional t-SNE embeddings [van der Maaten & Hinton 2008]

4 = word types seen at training time
© = not seen at training time



Evaluation on query-by-example

Task: Search for matches to a spoken query in a 433-hour corpus

I DTW baseline: Uses locality-sensitive hashing (LSH) to
quickly pre-select likely frame matches [Jansen & van Durme 2012]

I AWE-based search: Uses LSH to find approximate nearest
neighbor embeddings [Levin+ 15, Interspeech 2017]

System P@10 (↑) Time (s) (↓)
DTW [Jansen & van Durme 2012] 44.0 24.70
Template-based [Levin+ 15] 34.5 0.08
RNN AWE (contrastive) [Interspeech 2017] 60.2 0.38



Related work

Autoencoder-based embeddings

I [Y.-A. Chung+ Interspeech 2016, Y.-H. Wang+ ICASSP 2018, C.-H.

Shen+ ICASSP 2018]

I [Audhkhasi+ ICASSP 2017]

Unsupervised embeddings for spoken term discovery and
unsupervised speech recognition

I [Kamper+ SLT 2014, Interspeech 2015, CSL 2017, arXiv 2018]

Acoustic word embeddings for segmental speech recognition

I [Maas+ ICML WRL 2012, Bengio & Heigold ICASSP 2014]

Future work: More comparisons among embedding approaches



Part II:
Acoustically grounded word embeddings

Kartik Audhkhasi Wanjia He Michael Picheny

Shane Settle Weiran Wang

[ICLR 2017] He, Wang, & Livescu, “Multi-view recurrent acoustic word
embeddings,” ICLR 2017



Joint learning of acoustic + written
embeddings [ICLR 2017]

Motivation:
I Learn better acoustic embeddings by relating them to a

written character sequence
I Some tasks involve “distances” between speech segments and

written words
I Spoken term detection (“Query-by-text”)
I Automatic speech recognition

Approach: Learn a pair of RNN-based embedding functions
I Acoustic word embedding (speech → vector)
I Acoustically grounded word embedding

(character sequence → vector)

“Barack Obama” =
?



Character RNN-based acoustically grounded
word embedding
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Joint learning of acoustic and acoustically
grounded word embeddings

Given a matched (acoustic, written) word pair (x, c)

l0(x, c) = max{0,m + dcos(x, c)− dcos(x, c−)}
l1(x, c) = max{0,m + dcos(x, c)− dcos(c−, c)}
l2(x, c) = max{0,m + dcos(x, c)− dcos(x−, c)}
l3(x, c) = max{0,m + dcos(x, c)− dcos(x, x−)}

Variants:

I Weighted combination of these losses

I Cost-sensitive margin that scales with orthographic distance



Word discrimination results

(Using just the acoustic word embeddings)
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AWE:
Template-based

[ASRU 2013]

AWE:
CNN classifier 
[ICASSP 2016]

AWE:
CNN contrastive 
[ICASSP 2016]

AWE:
RNN classifier 

[SLT 2016]

AWE:
RNN contrastive 

[SLT 2016]

AWE:
RNN multi-view 

[ICLR 2017]



Visualization of acoustically grounded word
embeddings

O



Visualization of acoustically grounded word
embeddings



Acoustically grounded word embeddings for
speech recognition

I Ongoing work with Shane Settle, Kartik Audhkhasi (IBM),
Michael Picheny (IBM)

I Background: Connectionist temporal classification (CTC)
[Graves+ 2006]

[Figure credit: https://distill.pub/2017/ctc/]



Background: Whole-word CTC

Several groups have started studying whole-word ASR

I Output labels are whole words (no typos to fix)

I Now the final layer weights represent a word embedding matrix

I Many rare words =⇒ many rows are learned very poorly

I Idea: Use pre-trained acoustically grounded word embeddings



Improving ASR with acoustically grounded
word embeddings

Switchboard conversational telephone speech recognition:
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Improving ASR with acoustically grounded
word embeddings

Switchboard conversational telephone speech recognition:
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Improving ASR with acoustically grounded
word embeddings

CallHome conversational telephone speech recognition (slight
domain mismatch, and more speaker mismatch):
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Related work

Character sequence autoencoders for spoken term detection

I [Audhkhasi+ ICASSP 2017]

Phonetically oriented word embeddings for ASR error detection

I [Ghannay+ ACL WEVSRNLP 2016, Interspeech 2016]

Jointly learned acoustic and acoustically grounded word
embeddings for segmental speech recognition

I [Bengio & Heigold ICASSP 2014]



Part III: Acoustic-semantic embeddings via visual
grounding

Herman Kamper Shane Settle Greg Shakhnarovich

[Interspeech 2017] Kamper, Settle, Livescu, and Shakhnarovich “Visually
grounded learning of keyword prediction from untranscribed speech,”
Interspeech 2017.
[TASLP 2018] Kamper, Livescu, and Shakhnarovich “Semantic speech retrieval
with a visually grounded model of untranscribed speech,” IEEE/ACL TASLP
2018.



Acoustic-semantic embeddings

I Thus far: Embeddings that represent (mostly)
acoustic-phonetic information

I What about acoustic embeddings that represent meaning?

I Useful for semantic search, speech understanding, ...

I One possibility: extend text embedding approaches to speech
[Chung & Glass Interspeech 2018, Palaskar & Metze arXiv 2018, Y.-C.

Chen+ SLT 2018]

I More challenging than text embedding learning
I Less speech data available than text
I Speech data is more computationally demanding (1 text

“frame” ≈ 500 speech frames)

I Can we use some weaker semantic supervision to learn from
less data?



Images as weak semantic labels for speech

We use images as weak labels to learn semantic embeddings

I Data set from [Harwath & Glass ASRU 2015]

I (Slightly different setting from before: We will learn
whole-utterance embeddings)

I Won’t compare directly to other acoustic-semantic approaches

Play



Images as weak semantic labels for speech

Play

What can we hope to learn from such data?

I Off-the-shelf image taggers work pretty well! Use one to get
labels!

I Probably can’t learn a complete speech recognizer this way

I But maybe learn to predict keywords?



Related work

Joint acoustic-visual embeddings

I [Harwath & Glass ASRU 2015, ACL 2017; Harwath+ NIPS 2016, ACL

2017; Leidal+ ASRU 2017; Harwath PhD Dissertation 2018]

I [Gelderloos & Chrupala COLING 2016; Chrupala+ ACL 2017]

Linguistic unit discovery from multi-modal inputs in unwritten
languages

I [Scharenborg+ ICASSP 2018]

Main difference from related work: We use visual taggers to
produce weak textual labels to enable text-mediated tasks



Visually grounded keyword prediction

Idea: Use an image tagger to get soft textual labels [Kamper+ 17]
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[Figure credit: Herman Kamper]



Keyword prediction examples

Input utterance Predicted BoW labels

Play man on bicycle is doing tricks
in an old building bicycle, bike, man, riding,

wearing

a little girl is climbing a ladder child, girl, little, young

a rock climber standing in a
crevasse

climbing, man, rock

a dog running in the grass around
sheep

dog, field, grass, running

a man in a miami basketball
uniform looking to the right

ball, basketball, man,
player, uniform, wearing



Visually grounded embeddings are more
semantic
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Task: Semantic speech retrieval

burning

burning

fireWritten query:

burning

[Figure credit: Herman Kamper]



Semantic speech retrieval evaluation

Training

I Data: 8000 images with 5 spoken captions each (∼37 hours
of speech) [Harwath & Glass ASRU 2015]

I Weak labels: From image tagger trained on external data
(Flickr30k + MSCOCO)

Testing

I Prediction: Output words w where fw (X ) > α

I Evaluation: Use the predicted words for semantic speech
search, and measure typical search performance metrics
(P@10, P@N, EER, AP, Spearman’s ρ)

I Ground truth: Human (MTurk) judgments



Semantic speech retrieval evaluation

In terms of correlation with human scores:
I Visually grounded model performs about as well as oracle

models
I Much better than text-supervised model
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Semantic speech retrieval evaluation

In terms of Precision @10:
I Visually grounded model performs about as well as 50% WER

speech recognizer and ground-truth image tagger
I Main benefit of visually grounded model: Finding non-exact

matches
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Summary

3 ideas

I Acoustic word embeddings that respect phonetic similarity

I Acoustic word embeddings that respect semantic similarity

I Acoustically grounded (written) word embeddings that respect
phonetic similarity

Ongoing/future work

I Joint acoustic-semantic embeddings for NLP on speech

I Hierarchical embeddings: structure above/below the word

I More thorough comparisons among approaches

Thanks!


